SYNERGY POLYTECHNIC, BBSR

The Lesson Plan

Discipline: Meclanical	Semester:	Name of the Teaching Faculty:
Subject:	No of Days/per	Semester from Date: 15 9.2022 to Date: No of Weeks:
SOM	week class	The sm./Described Towler
Week	Class Day	Theory/Practical Topics
1st	1st	illustration in cantilever beam, simply supported beam and over
	2nd	hanging beam under point load and uniformly distributed load
	3rd	DO
	4th	Assumptions in the theory of bending,
	5th	DO
2nd	1st	Bending equation, Moment of resistance, Section modulus& neutral axis.
	2nd	DO
	3rd	Define column
	4th	DO
	5th	Axial load, Eccentric load on column
3rd	1st	Direct stresses, Bending stresses
	2nd	Maximum& Minimum stresses
	3rd	DO
	4th	Numerical problems on above.
	5th	DO
4th	1st	Buckling load computation using Euler's formula
	2nd	Columns with various end conditions
	3rd	DO
	4th	DO
5th	5th	Assumption of pure torsion
	1st	DO
	2nd	DO
	3rd	The torsion equation for solid and hollow circular shaft
	4th	Comparison between solid and hollow shaft subjected to pure torsion
	5th	DO

Sign of Faculty

HOD

Principal

SYNERGY POLYTECHNIC, BBSR

scipline:	Semester:	Name of the Teaching Faculty: A Shulo Sh Sadeathy
Machanical	No of Days/per	Semester from Date: 15 9 2022 to Date: No of
ibject:	week class 05	Weeks:
/eek	Class Day	Theory/Practical Topics
reer	1st	Types of load, stresses & strains
	2nd	law, Young's modulus, bulk modulus
st	3rd	Poisson's ratio,
	4th	DO derive the relation between three elastic
	5th	constants,
	1st	Principle of super position, stresses in composite section
	2nd	DO Temperature stress, determine the temperature stress in
2nd	3rd	composite bar (single core)
	4th	Strain energy and resilience, Stress due to gradually applied
	5th	suddenly applied and impact load
	1st	Definition of hoop and longitudinal stress, strain Derivation of noop stress, longitudinal stress, hoop strain,
	2nd	longitudinal strain and volumetric strain
3rd	3rd	DO
	4th	DO
111	5th	Computation of the change in length, diameter and volume petermination of normal stress, snear stress and resultant stress on
	1st	oblique plane
	2nd	DO
4th	3rd	Location of principal plane and computation of principal stress
	4th	DO
	5th	DO Location of principal plane and computation of principal stress and
	1st	Maximum shear stress using Mohr's circle
	2nd	DO
5th	3rd	Types of beam and load
-	4th	Concepts of Shear force and bending moment
	5th	Shear Force and Bending moment diagram

Sign of Faculty

HOD'9.

Principal